Международный Фестиваль «Южный полюс» Наука и исследования «Почему именно Земля?»



Скачать 375.28 Kb.
НазваниеМеждународный Фестиваль «Южный полюс» Наука и исследования «Почему именно Земля?»
Дата29.03.2013
Размер375.28 Kb.
ТипРеферат
источник


Международный Фестиваль «Южный полюс»

Наука и исследования


«Почему именно Земля?»


МБОУ «СОШ №8 МО «Ахтубинский район»


Работу выполнили:

ГладкихСаша, 16 лет;

Лаврентьева Настя, 16 лет;

Петрова Кристина, 16 лет

Руководитель: Якушкина Наталия Викторовна, учитель физики


г. Ахтубинск, Астраханская область


Содержание:

Введение:

1.Образование планеты.

  • Этап первый: слипание частиц

  • Этап второй: разогревание

  • Этап третий: вулканическая деятельность

2.Земля.

3.Зарождение жизни.

  • Начало

  • Сверкнула молния

  • Естественный отбор

  • Мутации

  • Новый уровень эволюции

4.Человечество и поиск.

  • Цивилизация и её влияние на космос

  • Новый век – новое решение

5.Солнце.

  • Солнечная атмосфера

  • Излучения солнца

  • Солнечная активность

  • Солнечная корона

  • Солнце и жизнь на Земле

  • Коротковолновое излучение солнца

  • Радиоизлучение солнца

  • Корпускулярное излучение солнца

  • Проблема «Солнце – Земля»

  • Заключение

6.Сноски.

7.Литература.



  1. Введение.

Человек рождается на Земле и существует на ней всю свою жизн. Здесь он развивается и физически, и духовно, становится Личностью, так как человек-существо биосоциальное, вообще, с человеком на Земле в течение его жизни происходят привычные для нас процессы. Существует много наук, занимающихся вопросами, касающимися человека, причём с самых разных точек зрения, и соответственно люди очень много знают, о том, как функционирует их организм, как происходит социализация, что такое психология человека и так далее можно говорить бесконечно…

А каждый ли человек задумывается, о том, где он живёт, почему именно здесь, на земле и ни в каком другом месте? Почему Земля называется Землёй? Хотя о происхождении названия нашей планеты, я думаю, многие всё-таки задумывались. И, как на многие другие вопросы подобного характера, современные гуманитарные науки, подкрепленные техническими открытиями, могут дать адекватные ответы.

Дело в том, что все планеты нашей звездной системы получили свои имена еще с незапамятных времен. Это было давно. Еще в те времена, когда все небесные объекты считались звездами. Что касаемо нашей планеты, то в большинстве языков применимо латинское наименование планеты – tellus или terra. Слово, предположительно, происходит из праиндоевропейского языка от корня ters – "сухой" или "сушить". Русское слово "земля", при этом, также имеет не менее древние корни и так же по предположениям ученых происходит из праиндоевропейского языка. Причем, согласно толкованию, приведенному в словаре Фасмера, имеет похожие соответствия в греческом языке, персидском, во многих славянских языках. Только в этом случае смысл слова сводится к корню, несущему в себе значение "низкий". Причиной такого наименования нашей планеты, видимо, послужил тот факт, что наши предки долгое время считали землю плоской или, как было принято говорить тогда, "низкой".

Земля — третья от Солнца планета Солнечной системы, крупнейшая по диаметру, массе и плотности среди планет земной группы.

Чаще всего Земля упоминается как Мир, Голубая планета, иногда Терра (от лат. Terra). Земля - единственное известное человеку на данный момент тело Солнечной системы, в частности, и Вселенной вообще, населённое живыми существами.

Жизнь появилась на Земле около 3,5 миллиардов лет назад. С тех пор биосфера Земли значительно изменила атмосферу и прочие абиотические факторы, обусловив количественный рост аэробных организмов, так же как и формирование озонового слоя, который вместе с магнитным полем Земли ослабляет вредную солнечную радиацию, тем самым сохраняя условия для жизни на Земле. Кора Земли разделена на несколько сегментов, или тектонических плит, которые постепенно мигрируют по поверхности за периоды во много миллионов лет. Приблизительно 70,8 % поверхности планеты занимает Мировой океан, остальную часть поверхности занимают континенты и острова. Жидкая вода, необходимая для всех известных жизненных форм, не существует на поверхности какой-либо из известных планет и планетоидов Солнечной системы, кроме Земли. Земля взаимодействует (притягивается гравитационными силами) с другими объектами в космосе, включая Солнце и Луну. Земля обращается вокруг Солнца и делает вокруг него полный оборот примерно за 365,26 дней. Этот отрезок времени — сидерический год, который равен 365,26 солнечным суткам. Ось вращения Земли наклонена на 23,4° относительно её орбитальной плоскости, это вызывает сезонные изменения на поверхности планеты с периодом в один тропический год (365,24 солнечных суток). Луна — начала своё обращение на орбите вокруг Земли примерно 4,53 миллиарда лет назад, что стабилизировало осевой наклон планеты и является причиной приливов, которые замедляют вращение Земли. А существует ли жизнь где-то ещё? В отношении себя люди знают многое, а о Земле, о том, как она появилась, о её свойствах знают лишь люди связанные с науками, занимающиеся этими вопросами и проблемами или очень любознательные люди. Так всё-таки что же такое Земля? Как она появилась?


П.Основная часть: Почему Земля ?

Вселенная настолько грандиозна, что в ней почетно играть даже скромную роль.

Харлоу Шепли

^ Глава 1: Образование планет

Чтобы понять, почему жизнь появилась именно на Земле, мы обратимся к спутникам нашего Солнца, "к тем обрывкам туманности (из которой образовалось Солнце), которые оторвались от центрального сгустка под действием центробежной силы и начали кружиться вокруг него. Именно здесь создаются условия, способствующие разделению легких и тяжелых частиц туманности"1. Происходит нечто похожее на наш древний способ добычи золота промывкой из золотоносного песка или на просеивание зерна в молотилках. Струя воды или воздуха уносит легкие частицы, оставляя тяжелые. Облака-спутники находятся на очень разных расстояниях от Солнца. Далекие облака оно почти не греет. Зато в близких - его жар испаряет все способное испариться. А его ослепительный ярчайший свет, работая как своеобразный "ветер", выдувает из них все испарившееся, вообще все легкое, оставляя лишь то, что тяжелее, что "не сдвинешь с места". Поэтому здесь почти не остается легких газов - водорода и гелия, основной составляющей газопылевой туманности. Мало остается и других "летучих" веществ. Все это уносится горячим "ветром" вдаль. В результате через некоторое время химический состав облаков-спутников становится совершенно разным. В далеких - он почти не изменился. А в тех, что кружатся вблизи источающего жар и свет Солнца, остался лишь "прокаленный" и "обдутый" материал -выделенная "драгоценная жизненно важная примесь" тяжелых элементов. Материал для создания обитаемой планеты готов. Начинается процесс превращения "материала" в "изделие", частиц туманности - в планеты.

^ 1. Этап первый - слипание частиц

В далеких облаках-спутниках многочисленные молекулы легких газов и редкие легкие пылинки понемногу собираются в огромные рыхлые шары малой плотности. В дальнейшем это планеты группы Юпитера. В облаках-спутниках, близких к Солнцу, тяжелые пылинки слипаются в плотные каменистые комки. Они объединяются в огромные массивные скалистые глыбы, чудовищными серыми угловатыми громадами плывущие по орбитам вокруг своей звезды. Двигаясь по разным, иногда пересекающимся орбитам, эти "астероиды", размером в десятки километров каждый, сталкиваются. Если на небольшой относительной скорости, то как бы "вдавливаются" один в другой, "нагромождаются", "налипают" один на другой. Объединяются в более крупные. Если на большой скорости, то мнут, крошат друг друга, порождая новую "мелочь", бесчисленные обломки, осколки, которые вновь проходят долгий путь объединения. Сотни миллионов лет идет этот процесс слияния мелких частиц в крупные небесные тела. По мере увеличения своих размеров они становятся все более похожими на шар. Растет масса, возрастает сила тяжести на их поверхности. Верхние слои давят на внутренние. Выступающие части оказываются грузом более тяжелым и постепенно погружаются в толщу нижележащих масс, раздвигая их под собой. Те, отходя в стороны, заполняют собой впадины. Грубый "ком" постепенно сглаживается. В результате вблизи Солнца образуются несколько сравнительно небольших по размеру, но очень плотных, состоящих из очень тяжелого материала, планет земной группы. Среди них Земля. Все они резко отличаются от планет группы Юпитера богатством химического состава, обилием тяжелых элементов, большим удельным весом. Теперь посмотрим на Землю. На звездном фоне, освещенный с одной стороны яркими солнечными лучами, плывет перед нами огромный каменный шар. Он ещё не гладкий не ровный. Ещё торчат кое-где выступы слепивших его глыб. Еще "читаются" не полностью заплывшие "швы" между ними. Пока это еще "грубая работа". Но вот что интересно. Уже есть атмосфера. Чуть мутноватая, очевидно, от пыли, но без облаков. Это выдавленные из недр планеты водород и гелий, которые в свое время прилипли к каменистым частицам и каким-то чудом уцелели, не были "сдуты" солнечными лучами. Первичная атмосфера Земли. Долго она не продержится. "Не мытьем, так катаньем" Солнце уничтожит её. Легкие подвижные молекулы водорода и гелия под действием нагрева солнечными лучами будут постепенно улетучиваться в космос. Этот процесс называется "диссипацией"

^ 2. Этап второй-разогревание

Внутри планеты, в смеси с другими оказываются зажатыми, "запертыми" радиоактивные вещества. Они отличаются тем, что непрерывно выделяют тепло, чуть заметно нагреваются. Но в толще планеты этому теплу некуда выйти, нет вентиляции, нет омывающей влаги. Над ними - мощная "шуба" из вышележащих слоев. Тепло накапливается. От этого радиоактивного разогрева начинается размягчение всей толщи планеты. В размягченном виде вещества, в свое время хаотично, бессистемно слепившие её, начинают теперь распределяться по весу. Тяжелые постепенно опускаются, тонут к центру. Легкие выдавливаются ими, поднимаются выше, всплывают все ближе к поверхности. Постепенно планета приобретает строение, подобное теперешней нашей Земле, - в центре, сжатой чудовищным весом навалившихся сверху слоев, тяжелое ядро. Оно окружено "мантией" толстым слоем вещества легче весом. И, наконец, снаружи, совсем тонкая, толщиной всего в несколько десятков километров, "кора", состоящая из наиболее легких горных пород. Радиоактивные вещества в основном содержатся в легких породах. Поэтому теперь они скопились в "коре", греют её. Основное тепло с поверхности планеты уходит в космос, - от планеты "чуть повеяло теплом". А на глубине десятков километров тепло сохраняется, разогревая горные породы.

^ 3. Этап третий - вулканическая деятельность

В некоторых местах недра планеты накаляются докрасна. Потом даже больше. Камни плавятся, превращаются в раскаленную, светящуюся оранжево-белым светом огненную кашу "магму". В толще коры ей тесно. В ней полно сжатых газов, которые готовы были бы взорвать, разбросать всю эту магму во все стороны огненными брызгами. Но сил для этого не хватает. Слишком крепка и тяжела окружающая и придавившая сверху кора планеты. И огненная магма, пытаясь хоть как-нибудь вырваться наверх, на свободу, нащупывает между сжимающими её глыбами слабые места, протискивается в щели, чуть плавя, их стенки своим жаром. И понемногу с годами, столетиями набирая силу, поднимается из глубин к поверхности планеты. И вот победа! "Канал" пробит! Сотрясая скалы, с грохотом вырывается из недр столб огня. Клубы дыма и пара вздымаются к небу. Летят вверх камни и пепел. Огненная магма, которая называется теперь "лава", выливается на поверхности планеты, растекается в стороны. Происходит извержение вулкана. Таких "пробитых изнутри дырок" на планете много. Они помогают молодой планете "бороться с перегревом". Через них она освобождается от накопившейся огненной магмы, "выдыхает" распирающие её горячие газы - в основном углекислый газ и водяной пар, а с ними - разные примеси, такие, как метан, аммиак. Постепенно в атмосфере почти исчезли водород и гелий, и она стала состоять в основном из вулканических газов. Кислорода в ней пока нет и в помине. Для жизни эта атмосфера совершенно непригодна. Очень важно, что вулканы выбрасывают на поверхность большое количество водяного пара. Он собирается в облака. Из них на поверхность планеты льются дожди. Вода стекает в низины, накапливается. И понемногу на планете образуются озера, моря, океаны, в которых может развиться жизнь. Здесь надо оговориться. Из нескольких гипотез происхождения жизни наиболее распространенную, кажущуюся нам наиболее обоснованной, гипотезу самопроизвольного зарождения жизни предложил академик А. И. Опаркин.

^ Глава 2: Земля

А пока - о Земле, идеально подготовленной к тому, чтобы стать нашей колыбелью. Нам повезло. На земле совпало несколько благоприятных для жизни обстоятельств. Далеко не каждая звезда становится Солнцем, окруженным планетами. Стоило туманности медленнее вращаться, не возникла бы центробежная сила, не оторвались бы клочки от центрального сгустка, не возникли бы планеты. И плыла бы такая одинокая "бездетная" звезда в чёрной бездне, бесплодно расточая своё тепло и свет... Далеко не всякая звезда, породившая планеты, способна создать на них условия, пригодные для зарождения жизни. Для зарождения и развития жизни нужно очень много времени, миллиарды лет. Всё это время звезда должно гореть ровно, спокойно, одинаково. Тогда условия на планете будут постоянными -и жизнь сможет к ним приспособиться. А ведь звезды далеко не такие не все такие спокойные, как наше Солнце. "Молодые звезды иногда вспыхивают. Волна испепеляющего жара обрушивается на окружающие планеты, сжигая, испаряя все, что способно гореть и кипеть. Жизнь на планете после такого огненного урагана, безусловно, погибнет, и на пустом голом шаре надо будет начинать все сначала. Для развития жизни нужна спокойная звезда. Наше Солнце - спокойная звезда"2. Но поставьте нашу Землю ближе к Солнцу, например, на место Меркурия или Венеры. От нестерпимой жары на Земле даже не смогут образоваться океаны. Вода сразу выкипит. Какая уж тут жизнь. Отодвиньте Землю дальше от Солнца, куда-нибудь в район Юпитера. Тоже жизнь не возникнет. Вода основа жизни будет там всегда замерзшей. Нам повезло ещё в том, что орбита Земли круговая, а ведь могла быть эллиптическая. Вот представьте себе, что Земля то приближается к Солнцу так близко, что вода с её поверхности вся испаряется, то удаляется так далеко, что вода, выпав из атмосферы обратно на Землю, промерзает насквозь. Через "комфортное" место, где температуры "в самый раз", она проносится дважды в год с такой стремительностью, что "ничего не успеть сделать". Для зарождения и развития жизни просто нет времени. Подобный жар-холод может быть не только от эллиптичности орбиты. Бывают "двойные звезды". Тогда при любой орбите планета не может всегда быть на равном расстоянии от источника тепла. То одно солнце близко, то другое, то оба далеко. Нам повезло и в смысле размера нашей планеты. Будь она меньше, например, размером с Луну, не удержать ей на себе атмосферу. А значит, и воду, склонную испарятся, переходя в атмосферу. Сколько бы вулканы не подбрасывали все новые и новые порции газов и воды, всё это быстро улетучится в космос. На Луне, поэтому и нет ни атмосферы, ни воды, ни жизни. Неудобна для жизни и Земля, размером, скажем с Юпитер. Неудобна из-за слишком сильного притяжения. Такая большая "Земля" будет держать на себе слой очень густой атмосферы, содержащей к тому же водород и гелий, неблагоприятные для возникновения жизни. Толстый слой очень плотных облаков создаст на такой планете вечный мрак. А без живительных солнечных лучей какая может быть жизнь? "Одним словом, когда мы глядим на небо, усыпанное звездами, не надо забывать, что, во-первых, вероятно, далеко не все звезды имеют планеты, а во-вторых, далеко не все планеты пригодны для жизни. Но... звезд в нашей галактике примерно 100 миллиардов, и уж, наверное, в ней достаточно планет, похожих на Землю"3.

^ Глава 3: Зарождение жизни (гипотеза А. И. Опаркина)

Задолго до того, как мы установим контакт с другими разумными существами, обитающими где-либо в галактике, мы должны понять не только то место, которое мы занимаем, но и пройденный нами долгий путь.


Джон Бернал

1. Начало

Итак, перед нами планета Земля. Она имеет океан. Представим его себе.

Реки, впадающие в него, сначала текут по склонам гор, по пути кроша

горные породы, и все, что могут, выносят с собой в океан. Атмосфера над океаном насыщена вулканическими газами, пылью, пеплом. Волны, разлетаясь брызгами, захватывают всё это в свои глубины. В результате вода в первозданном океане горько-соленая, мутная. "Она - настоящий "бульон", столько здесь всего перемешано и растворено. Здесь можно встретить почти все элементы таблицы Менделеева"4. Особенно много тех, которые необходимы для создания живых существ. Теплая вода обеспечивает молекулам и атомам хорошую подвижность, перемешивание, контакты между собой в самых разных сочетаниях. Но для химических реакций этого мало. Для них часто бывает, нужна "внешняя" сила. Толчок извне может помочь атомам и молекулам соединиться, может разбить молекулы на части. Химики для ускорения реакций часто применяют нагрев. Подобным же образом действует и природа. Для этого работают не только частички света -фотоны, но и "космические лучи" - осколки атомов, выброшенные далекими звездами, которые круглые сутки проносятся сквозь атмосферу и вонзаются в толщу океана. Их удары особенно сильны и больше годятся для разбивания молекул.

^ 2. Сверкнула молния

Небо заволокли черные тучи. В них и вводе накапливаются электрические разряды. Они рванулись навстречу друг другу. Ослепительная вспышка молнии озарила волны и прибрежные скалы. А в толще воды при этом резко метнулись молекулы, столкнулись друг с другом. Некоторые от ударов развалились. Зато другие, наоборот, соединились. Стихла гроза. Наступила ночь. Далеко от берега на дне океана пробудился дремавший вулкан. Горячие газы, вырвавшись из его жерла, растворились в воде, насытив её новыми порциями углекислоты, метана, аммиака, сернистого газа. Из недр планеты пошла в чёрную пучину огненная лава. Вспыхнула красным заревом, закипела вода. Тучи ослепительно сверкающих пузырей устремились вверх. Забурлили, засветились изнутри в мраке ночи черные волны. Густые облака пара накрыли их. "Бульон" над вулканом стал горячее и гуще. Целыми кучами поплыли новые, причудливые "комки" атомов - только что возникшие крупные молекулы...

^ 3. Естественный отбор

Океанские волны без конца перемешивают, переставляют атомы, по-разному комбинируют их. Молекулы создаются и распадаются. Снова и снова в каждой капле океана повторяются миллиарды раз уже испробованные и не оправдавшие себя сочетания. Неужели в таких условиях возможна хоть какая-то эволюция? Возможна. Сами собой, без всякого плана или системы, создаются разные, какие получатся, варианты молекул. А потом испытываются. Наверху, в небе, разыгралась гроза. И мы видим, как при вспышке молний, шарахнувшись, разваливаются, рассыпаются все слабо связанные молекулы. А те, что выдержали эту проверку на прочность, остаются. Уже на этом этапе химической эволюции вещества работает своеобразный "естественный отбор". "Эволюция идёт в направлении создания всё более сложных и при этом прочных молекул, обладающих все

новыми и новыми свойствами. А это приближает возможность нащупать в дальнейшем такие формы и свойства молекул, которые сделают вещество существом. В химической эволюции вещества главную роль играют атомы углерода - это особый, незаменимый элемент. Его атомы обладают поистине неисчерпаемыми "потенциальными возможностями". Они четырехвалентны (т.е. очень высокая способность присоединять атомы и молекулы др. химических элементов), что в атомном мире редкость"5. Цепляясь друг за друга, они могут образовывать молекулы в виде колец или цепочек, при этом прихватывая другие атомы или молекулы. И тогда кольца и цепочки обрастают "гроздьями", создаются грандиозные, сложнейшие молекулы в виде ветвящихся деревьев, насчитывающие в своем составе многие тысячи атомов самых различных элементов. Сегодня таких молекул в природе бесчисленное множество вариантов. Но пока они еще не создались. В первозданном океане идут эксперименты. Фронт работы широчайший - весь океан. Атомов - сколько угодно. Времени - сотни миллионов лет. И вот нет-нет, где-то получается что-то интересное. Возникает совершенно случайно какая-нибудь новая комбинация атомов, обладающих прогрессивными свойствами. И значит, крохотный шаг к появлению жизни сделан. Делая, может быть, всего по одному такому шагу за тысячи лет, природа за миллиард лет все же дошла до возникновения жизни. Попробуем мысленно представить себе главные из этих шагов. Пропустим несколько миллионов лет и снова вернемся в первозданный океан. Кроме исходных крохотных и примитивных молекул, вроде метана, аммиака и углекислого газа, с которых всё началось, перед нами теперь плавает в воде множество совершенно новых, незнакомых комбинаций атомов. Появились, например, полимеры -длинные цепочки из молекул. Иногда одинаковых, иногда разных. Появились катализаторы. Это молекулы-помощники, молекулы-посредники, облегчающие перестройку других молекул. Через много миллионов лет мы видим, что простенькие полимеры стали полипептидами. Плывут длинные, сложные, ветвистые нити, состоящие из аминокислот. Их тысячи вариантов. Но самое поразительное появился процесс копирования молекул -репликация. Это форменная эволюция. Раньше случайно возникшая комбинация атомов, существуя в одном экземпляре, не влияла на ход химической эволюции в целом. К тому же она могла в любой момент быть разбита шальной космической частицей и "изобретение" безвозвратно терялось. Теперь, при тиражировании молекул, "опыт" распространяется, а гибель некоторых экземпляров не представляет опасности.

4. Мутация

"Репликация не тормозит прогресс, как это может показаться, заполняя океан однотипными молекулами. Дело в том, что при копировании иногда происходит сбой. Исходную молекулу или её матрицу может что-либо повредить. Например, блеснувшая вблизи молния. Получится "мутация", и травма начинает печататься во всех следующих копиях, дав начало новой серии молекул. "Мутанты" вовсе не всегда являются браком. Случается, что среди них находят ценные находки, обладающие преимуществами перед

оригиналами"6. Поэтому, говоря шутливо, внешние силы не калечат молекулы, а вносят в них небольшие изменения, как бы с целью посмотреть: что получится? Результаты этих стихийных экспериментов природы оценивает практика. Естественный отбор беспощадно перечеркивает все миллионы "глупых" вариантов, оставляя лишь единица "умных". В итоге мутации способствуют увеличению разнообразия молекул и этим помогают идти химической эволюции вещества.

5. ^ Новый уровень эволюции

Проходят ещё миллионы лет. Природа "нащупала" наилучшие последовательности аминокислот в цепочках полипептидов - появились белковые молекулы - будущие кирпичи живых организмов. Усложнилась и стала совершеннее репликация. Матрица теперь уже не механическая форма, а условная, химическая "запись" порядка аминокислот в белковой молекуле. Запись в виде портативной цепочки особых молекул - нуклеотидов. Эволюция вещества поднимается на новый уровень. Длинные, причудливо изогнутые нити разных белковых молекул цепляются друг за друга и понемногу собираются. Сначала в небольшие комочки, потом в более крупные комки, похожие на клубки или капли. У молекул, тесно соприкоснувшихся в комке, разные свойства. Иногда это приводит к возможности своеобразного их сотрудничества. Например, катализаторы, оказавшиеся в гуще молекул, могут способствовать реакциям, полезным для комка в целом. Иначе говоря, комки белковых молекул оказываются в ряде случаев "системами", способными к какой-то внутренней деятельности. Но система системе рознь. И конечно, начинается долгий путь поисков наиболее удачных сочетаний молекул в них. Удачнее, например, те, в которых снаружи расположились особо прочные молекулы. Они служат механической защитой остальным. Удачнее те, в которых включены молекулы, способные реагировать на опасные примеси в воде. Они служат химической защитой. Но наиболее интересны те варианты, в которых оказался хороший набор катализаторов. Теперь, правда, их нужно называть ферментами. В этих комках начинается более или менее активный "обмен веществ" с окружающей средой. Идет захват материала, расщепление молекул, иногда даже с выделением энергии, выбрасывание отходов, восстановление поврежденных молекул. Даже репликация синтез белковых цепочек. Обмен веществ - свойство очень прогрессивное. Такой комок оказывается очень устойчивым перед разными разрушающими внешними воздействиями, независимым, прочным, долговечным. При большой сложности он становится очень живучим - то, к чему стремится химическая эволюция. Вещество в нем, в сущности, приобрело некоторые свойства живого! Эволюция белковых молекул приводит к их специализации. В одних, например, лучше идут реакции с получением энергии, другие чётко реагируют на изменения температуры, в-третьих, хорошо налажена репликация. И если мы снова пропустим миллионы лет, то обнаружим в океане ещё более "гигантские" сооружения, в каждом из которых миллионы молекул. Разные типы комков вошли в них в виде отдельных деталей. Сейчас

биологи называют эти детали органеллами. А всё сооружение в целом одноклеточным организмом! Вспомните предысторию жизни. Атомы -молекулы - полимеры - органеллы одноклеточные существа. Всё идет в направлении от простого к сложному, к разнообразию структур, форм, свойств. В живых организмах добавилось важнейшее новое - могучее стремление к самосохранению, к долговечности. Нужны улучшенная защищенность, более хорошая вооруженность в борьбе за существование. Объединяясь, клетки этого достигают. Борьба за существование, в частности, способствует увлечению разнообразия форм в животном мире. Иногда куда выгоднее не вступать в бой с врагом, а просто уйти в другую "экологическую нишу", переменить образ жизни так, чтобы, даже оставаясь на том же участке земли, никогда и ни в чём не соприкасаться с врагом. Перестать соперничать с ним. Не иметь с ним ничего общего. Противопоставить сопернику не силу, а какое-то совершенно особое качество, которое даёт новые возможности к существованию. Пройдет ещё очень много времени и на Земле появится человек. Появится, и изменит мир, в котором живет. Он научится наблюдать за звёздами, за планетами Солнечной системы, строить космические аппараты и запускать их в космос. Многие из этих аппаратов садятся на поверхности планет и возвращаются обратно.

^ Глава 4: Человечество и поиск

Человечество достигло таких успехов в астрономии, технике, связи, кибернетике, которые создали реальные технические предпосылки для установления связи с разумной жизнью других миров.

Академик В. А. Амбарцумян

^ 1. Цивилизация и её влияние на космос

Плоды нашей деятельности уже заметны из космоса. Это подтверждают космонавты, различающие с орбитальных станций даже шоссейные и железные дороги, мосты, корабли в море. Они видят это невооруженным глазом, а значит, с Луны то же самое можно увидеть в тысячекратный телескоп, какие стоят в наших обсерваториях. "Марсиане, если бы они существовали, даже вооруженные техникой, равноценной нашей, без особого труда обнаружили бы наши города, дымы промышленности, космические аппараты, испытания атомных бомб, при более пристальном наблюдении они заметили бы искусственные моря и оросительные каналы. Ну а работу телевизионных станций можно обнаружить и с других планетных систем"7. Люди в мире звёзд. Цивилизация. Сообщество разумных существ, выросшее за миллиарды лет из комочков слизи, копошащихся в мутных лужах. Разумных существ, проникших в глубины атома и вдали Вселенной, познавших строение звёзд и тайну живой клетки, постигших законы своей эволюции!

^ 2. Новый век - новое решение

В каждую эпоху люди в своих мечтах решали проблему контактов с инопланетянами, исходя из техники своего времени. Вплоть до XVIII века

люди полагали, что для полёта к звёздам достаточно будет энергии мышц, своих и домашних животных. И поэтому, даже фантазируя, единственное, что они могли предложить, - это всего-навсего "экипаж, запряженный... в стаю птиц"8. Что воздух кончится сразу, как "отлетишь от дома", наши далёкие предки не знали. Они не представляли себе и огромные расстояния, отделяющие нас от Луны и планет, не говоря уже о расстояниях до звезд. Потом, измерив эти расстояния и узнав, что небесные тела разделяет почти пустое, безвоздушное пространство, стали мечтать хотя бы о взаимной сигнализации. В XIX веке, всего каких-нибудь сто лет тому назад все серьезно верили в существование марсиан. И тогда вполне серьезно ученые выдвигали предположения об оптической связи с ними. Математик Карл Гаусс предлагал прорубить в сибирских лесах многометровую просеку в виде треугольника и засеять её пшеницей. Марсиане увидят в свои телескопы на фоне тёмно-зеленых лесов аккуратненький светлый треугольник, и поймут, что слепая природа не могла это сделать. Значит, на этой планете живут разумные существа. Многим идея Гаусса понравилась, но, чтобы показать марсианам, что земляне высокообразованны, предлагали на сторонах треугольника сделать квадраты, чтобы получился рисунок теоремы Пифагора. Этот проект обладал заметными недостатками. Ведь Сибирь часто покрыта облаками и снегом, и треугольник может долго оставаться незамеченным марсианами. А главное, даже в хорошую погоду его можно будет видеть только днем. Поэтому более правильным показался проект венского астронома Иозефа Иоганна фон Литрова. Он предлагал в пустыне Сахара, где всегда безоблачно, вырыть каналы в виде правильных геометрических фигур (возможно теорему Пифагора). Стороны многоугольника должны быть, по крайней мере, тридцать километров. А ночью поверх воды налить керосин и поджечь. Огненные полосы прочертят на ночной стороне планеты яркий чертеж. Уж марсиане не могут его не заметить. Но и этот проект был отвергнут как очень дорогой. Француз Шарль Кро подсказал гораздо более дешёвый способ связи. Он посоветовал своему правительству "соорудить огромную батарею зеркал для отражения солнечных лучей в сторону Марса"9. Зайчик, конечно, был бы ослепительно ярок. Проект Шарля Кро имел очень большое преимущество по сравнению с остальными. Зеркала можно шевелить, и тогда при взгляде с Марса ослепительная яркая точка на Земле подмигивала бы. И главное, мигание можно было передать марсианам сообщение. Наивно! А ведь это всё было совсем недавно, при жизни наших предков. Тем временем создаётся целый ряд научно-фантастических произведений, посвященных перемещениям между планетами. Наиболее известны из них "Из пушки на Луну" Жуль Верна и "Война миров" Герберта Уэллса. С развитием ракетной техники в послевоенные годы, а главное, запуск первого искусственного спутника Земли в 1957 году дали мощный толчок старым мечтам человечества о межпланетных перелётах. Хлынула целая лавина самых разнообразных научно-фантастических произведений. Полетав к Венере и Марсу, герои книг

стали запросто летать к звездам, бороздя уже на огромных межзвездных кораблях бескрайние просторы Галактики, сражаясь с самой различной космической нечистью и злодеями. Но и тут снова, уже в который раз, строгий анализ охладил мечтателей. Современные ракеты, работающие на химическом топливе, изготавливаются из самых прочных и легких материалов, из двигателей "выжато" уже почти всё, но всё это делает пределом наших мечтаний полёт к Марсу или Венере. И всё же полёты в пределах Солнечной системы реальны. Но у нас нет надежды - встретить здесь разумные существа. Есть шансы найти их в других планетных системах, около других звезд. Но о полёте к звёздам на современных ракетах говорить бессмысленно: полёт до ближайшей звезды (кроме Солнца) - Альфа Центавра будет длиться 80 тысяч лет при скорости 17 километров в секунду.


^ Глава 5: Солнце


Мы рады той таинственности, которая находится за пределами нашей досягаемости...

Харлоу Шепли.

Солнце - центральное тело Солнечной системы - представляет собой раскалённый плазменный шар. Солнце - ближайшая к Земле звезда. Свет от него до нас доходит за 8,3 мин. Солнце решающим образом повлияло на образование всех тел Солнечной системы (см. главу 1) и создало те условия, которые привели к возникновению и развитию жизни на Земле (см. главу 2). Его масса в 333 000 раз больше массы Земли и в 750 раз больше массы всех других планет, вместе взятых. За 5 миллиардов лет существования Солнца уже около половины водорода в его центральной части превратилось в гелий. В результате этого процесса выделяется то количество энергии, которое Солнце излучает в мировое пространство. Мощность излучения Солнца очень велика: около 3,8 * 410 520 0 степени МВт. На Землю попадает ничтожная часть Солнечной энергии, составляющая около половины миллиардной доли. Она поддерживает в газообразном состоянии земную атмосферу, постоянно нагревает сушу и водоёмы, даёт энергию ветрам и водопадам, обеспечивает жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти и других полезных ископаемых. Видимый с Земли диаметр Солнца незначительно меняется из-за эллиптичности орбиты и составляет, в среднем, 1 392 000 км (что в 109 раз превышает диаметр Земли). Расстояние до Солнца в 107 раз превышает его диаметр. Солнце представляет собой сферически симметричное тело, находящееся в равновесии. Всюду на одинаковых расстояниях от центра этого шара физические условия одинаковы, но они заметно меняются по мере приближения к центру. Плотность и давление быстро нарастают вглубь, где газ сильнее сжат давлением вышележащих слоев. Следовательно, температура также растёт по мере приближения к центру. В зависимости от изменения физических условий Солнце можно разделить на несколько концентрических слоев, постепенно переходящих друг в друга. В центре Солнца температура составляет 15 миллионов

градусов, а давление превышает сотни миллиардов атмосфер. Газ сжат здесь до плотности около 150 000 кг/м. Почти вся энергия Солнца генерируется в центральной области с радиусом примерно 1/3 солнечного. Через слои, окружающие центральную часть, эта энергия передаётся наружу. На протяжении последней трети радиуса находится конвективная зона. Причина возникновения перемешивания (конвекции) в наружных слоях Солнца та же, что и в кипящем чайнике: количество энергии, поступающее от нагревателя, гораздо больше того, которое отводится теплопроводностью. Поэтому вещество вынужденно приходит в движение и начинает само переносить тепло. Ядро и конвективная зона фактически не наблюдаемы. Об их существовании известно либо из теоретических расчётов, либо на основании косвенных данных. Над конвективной зоной располагаются непосредственно наблюдаемые слои Солнца, называемые его 1 Атмосферой 0. Они лучше изучены, т.к. об их свойствах можно судить из наблюдений.

^ 1. Солнечная атмосфера

Солнечная атмосфера так же состоит из нескольких различных слоев. Самый глубокий и тонкий из них фотосфера, непосредственно наблюдаемая в видимом непрерывном спектре. Толщина фотосферы приблизительно около 300 км. Чем глубже слои фотосферы, тем они горячее. Во внешних более холодных слоях фотосферы на фоне непрерывного спектра образуются Фраунгоферовы линии поглощения. Во время наибольшего спокойствия земной атмосферы можно наблюдать характерную зернистую структуру фотосферы. Чередование маленьких светлых пятнышек - гранул размером около 1000 км, окруженных тёмными промежутками, создаёт впечатление ячеистой структуры - грануляции. Возникновение грануляции связано с происходящей под фотосферой конвекцией. Отдельные гранулы на несколько сотен градусов горячее окружающего их газа, и в течение нескольких минут их распределение по диску Солнца меняется. Спектральные измерения свидетельствуют о движении газа в гранулах, похожих на конвективные: в гранулах газ поднимается, а между ними -опускается. Это движение газов порождают в солнечной атмосфере акустические волны, подобные звуковым волнам в воздухе. Распространяясь в верхние слои атмосферы, волны, возникшие в конвективной зоне и в фотосфере, передают им часть механической энергии конвективных движений и производят нагревание газов последующих слоев атмосферы -хромосферы и короны. В результате верхние слои атмосферы с температурой около 4500К оказываются самыми "холодными" на Солнце. Как вглубь, так и вверх от них температура газов быстро растёт. Расположенный над фотосферой слой называют хромосферой, во время полных солнечных затмений в те минуты, когда Луна полностью закрывает фотосферу, виден как розовое кольцо, окружающее тёмный диск. На краю хромосферы наблюдаются выступающие язычки пламени - хромосферные спикулы, представляющие собой вытянутые столбики из уплотнённого газа. Тогда же можно наблюдать и спектр хромосферы, так называемый спектр вспышки. Он состоит из ярких эмиссионных линий водорода, гелия, ионизированного

кальция и других элементов, которые внезапно вспыхивают во время полной фазы затемнения. Выделяя излучение Солнца в этих линиях, можно получить его изображение. Хромосфера отличается от фотосферы значительно более неправильной неоднородной структурой. Заметно два типа неоднородностей - яркие и тёмные. По своим размерам они превышают фотосферные гранулы. В целом распределение неоднородностей образует так называемую хромосферную сетку, особенно хорошо заметную в линии ионизированного кальция. Как и грануляция, она является следствием движения газов в подфотосферной конвективной зоне, только происходящих в более крупных масштабах. Температура в хромосфере быстро растёт, достигая в верхних её слоях десятков тысяч градусов. Самая верхняя и самая разряжённая часть солнечной атмосферы - корона, прослеживающаяся от солнечного лимба до расстояний в десятки солнечных радиусов и имеющая температуру около миллиона градусов. Корону можно видеть только во время полного солнечного затмения либо с помощью коронографа. Вся солнечная атмосфера постоянно колеблется. В ней распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания носят резонансный характер и происходят с периодом около 5 мин. В возникновении явлений происходящих на Солнце большую роль играют магнитные поля. Вещество на Солнце всюду представляет собой намагниченную плазму. Иногда в отдельных областях напряженность магнитного поля быстро и сильно возрастает. Этот процесс сопровождается возникновением целого комплекса

явлений солнечной активности в различных слоях солнечной атмосферы. К ним относятся факелы и пятна в фотосфере, флоккулы в хромосфере, протуберанцы в короне. Наиболее замечательным явлением, охватывающим все слои солнечной атмосферы и зарождающимся в хромосфере, являются солнечные вспышки.

2. ^ Излучения Солнца

Радиоизлучение Солнца имеет две составляющие постоянную и переменную. Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучение спокойного Солнца. Рентгеновские лучи исходят в основном от верхних слоев атмосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности. Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц - корпускул. Нейтрино, электроны, протоны, альфа-частицы, а так же более тяжелые атомные ядра составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы -солнечный ветер, являющийся продолжением внешних слоев Солнечной атмосферы - солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего они связаны с особыми областями Солнечной короныкоронными дырами, а также, возможно, с долгоживущими активными областями на Солнце (см. Солнечная активность) . Наконец, с солнечными вспышками связаны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частица с такими большими энергиями называются солнечными космическими лучами. Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои её атмосферы и магнитное поле, вызывая множество интересных геофизических явлений.

^ 3. Солнечная активность

Солнечная активность - совокупность явлений, периодически возникающих в солнечной атмосфере. Проявления солнечной активности тесно связаны с магнитными свойствами солнечной плазмы. Возникновение активной области начинается с постепенного увеличения магнитного потока в некоторой области фотосферы. В соответствующих местах хромосферы после этого наблюдается увеличение яркости в линиях водорода и кальция. Такие области называют флоккулами. Примерно в тех же участках на Солнце в фотосфере (т.е. несколько глубже) при этом также наблюдается увеличение яркости в белом (видимом) свете - факелы. Увеличение энергии, выделяющейся в области факела и флоккула, является следствием увеличившихся до нескольких десятков экстред напряженности магнитного поля. Затем в солнечной активности наблюдаются солнечные пятна, возникающие через 1-2 дня после появления флоккула в виде маленьких чёрных точек - пор. Многие из них вскоре исчезают, и лишь отдельные поры за 2-3 дня превращаются в крупные тёмные образования. Типичное солнечное пятно имеет размеры в несколько десятков тысяч километров и состоит из тёмной центральной части - тени и волокнистой полутени. Важнейшая особенность пятен - наличие в них сильных магнитных полей, достигающих в области тени наибольшей напряжённости в несколько тысяч экстред. В целом пятно представляет собой выходящую в фотосферу трубку силовых линий магнитного поля, целиком заполняющих одну или несколько ячеек хромосферной сетки. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе. Поэтому вокруг тени магнитные силовые линии принимают направление, близкое к горизонтальному. Полное, суммарное давление в пятне включает в себя давление магнитного поля и уравновешивается давлением окружающей фотосферы, поэтому газовое давление в пятне оказывается меньшим, чем в фотосфере Магнитное поле как бы расширяет пятно изнутри. Кроме того, магнитное поле подавляет конвективные движения газа, переносящие энергию из глубины вверх. Вследствие этого в области пятна температура оказывается меньше примерно на 1000К. Пятно как бы охлаждённая и скованная магнитным полем яма в солнечной фотосфере. Большей частью пятна возникают целыми группами, в которых, однако, выделяются два больших пятна. Одно, наибольшее, - на западе, а другое, чуть поменьше, - на

востоке. Вокруг и между ними часто бывает множество мелких пятен. Такая группа пятен называется биполярной, потому что у обоих больших пятен всегда противоположная полярность магнитного поля. Они как бы связаны с одной и той же трубкой силовых линий магнитного поля, которая в виде гигантской петли вынырнула из-под фотосферы, оставив концы где-то в ненаблюдаемых, глубоких слоях. То пятно, которое соответствует выходу магнитного поля из фотосферы, имеет северную полярность, а то, в области которого силовые линии входят обратно под фотосферу, южную. Самое мощное проявление фотосферы - это вспышки. Они происходят в сравнительно небольших областях хромосферы и короны, расположенных над группами солнечных пятен. По своей сути вспышка - это взрыв, вызванный внезапным сжатием солнечной плазмы. Сжатие происходит под давлением магнитного поля и приводит к образованию длинного плазменного жгута или ленты. Длина такого образования составляет десятки и даже сотни тысяч километров. Продолжается вспышка обычно около часа. Хотя детально физические процессы, приводящие к возникновению вспышек, ещё не изучены, ясно, что они имеют электромагнитную природу. Наиболее грандиозными образованиями в солнечной атмосфере являются протуберанцы - сравнительно плотные облака газов, возникающие в солнечной короне или выбрасываемые в неё из хромосферы. Типичный протуберанец имеет вид гигантской светящейся арки, опирающейся на хромосферу и образованной струями и потоками более плотного и холодного, чем окружающая корона, вещества. Иногда это вещество удерживается прогнувшимися под его тяжестью силовыми линиями магнитного поля, а иногда медленно стекает вдоль магнитных силовых линий. Имеется множество различных типов протуберанцев. Некоторые из них связаны со взрывоподобными выбросами вещества из хромосферы в корону. Общая активность Солнца, характеризуемая количеством и силой проявления центров солнечной активности, периодически изменяется. Существует множество различных удобных способов оценивать уровень солнечной активности. Обычно пользуются наиболее простым и введённым раньше всех способом - числами Вольфа. Числа Вольфа пропорциональны сумме полного числа пятен, наблюдаемых в данный момент на Солнце, и удесятерённого числа групп, которые они образуют. Период времени, когда количество центров активности наибольшее называют максимумом солнечной активности, а когда их совсем нет или почти совсем нет -минимумом. Максимумы и минимумы чередуются в среднем с периодом 11 лет. Это составляет так называемый 11 - летний цикл солнечной активности. 4. Солнечная корона

Это самые внешние, очень разряженные слои атмосферы Солнца. Во время полной фазы солнечного затмения вокруг диска Луны, который закрывает от наблюдателя яркую фотосферу, внезапно как бы вспыхивает жемчужное сияние. Это на несколько десятков секунд становится видимой солнечная корона. Важной особенностью короны является её лучистая структура. Лучи бывают разной длины, вплоть до десятка и более солнечных радиусов.

Общая форма короны меняется с фазами цикла солнечной активности: в годы максимума корона почти сферична, в годы минимума она сильно вытянута вдоль экватора. Корона представляет собой сильно разряжённую высоко ионизированную плазму с температурой 1-2 миллиона градусов. Причина столь большого нагрева солнечной короны связана с волновыми движениями, возникающими в конвективной зоне Солнца. Цвет короны почти совпадает со светом излучения всего Солнца. Это связано с тем, что свободные электроны, находящиеся в короне, и возникающие в результате сильной ионизации газов, рассеивают излучение, приходящее от фотосферы. Из-за огромной температуры частицы движутся так быстро, что при столкновениях от атомов отлетают электроны, которые начинают двигаться как свободные частицы. В результате этого лёгкие элементы полностью теряют все свои электроны, так что в короне практически нет атомов водорода или гелия, а есть только протоны и альфа-частицы. Тяжелые элементы теряют до 10-15 внешних электронов. По этой причине в солнечной короне наблюдаются необычные спектральные линии, которые долгое время не удавалось отождествить с известными химическими элементами. Горячая плазма сильно излучает и поглощает радиоволны. Поэтому наблюдаемое солнечное радиоизлучение на метровых и дециметровых волнах возникает в солнечной короне. Иногда в солнечной короне наблюдаются области пониженного свечения. Их называют корональными дырами. Особенно хорошо эти дыры заметны по снимкам в рентгеновских лучах.

^ 5. Солнце и жизнь на Земле

Перспективы использования солнечной энергии. Из всей энергии, излучаемой Солнцем в межпланетное пространство, примерно одна двухмиллиардная часть достигает границы земной атмосферы. Около трети энергии солнечного излучения, падающего на Землю, отражается ею и рассеивается в межпланетном пространстве. Много солнечной энергии идет на нагревание земной атмосферы, океанов и суши. В настоящее время в народном хозяйстве достаточно часто используется солнечная энергия — гелиотехнические установки (различные типы солнечных теплиц, парников, опреснителей, водонагревателей, сушилок). Солнечные лучи, собранные в фокусе вогнутого зеркала, плавят самые тугоплавкие металлы. Ведутся работы по созданию солнечных электростанций, по использованию солнечной энергии для отопления домов и т. д. Практическое применение находят полупроводниковые солнечные батареи, позволяющие непосредственно превращать солнечную энергию в электрическую. Наряду с химическими источниками тока солнечные батареи используются, например, в качестве источников электропитания на искусственных спутниках Земли и космических комплексах. Все это — лишь первые успехи гелиотехники, использующей самую экологически чистую энергию.

^ 6.Коротковолновое излучение Солнца. Ультрафиолетовое и рентгеновское излучения исходят в основном от верхних слоев

хромосферы и короны. Это установили, запуская ракеты с приборами во время солнечных затмений. Очень горячая солнечная атмосфера всегда испускает невидимое коротковолновое излучение, но особенно мощным оно бывает в годы максимума солнечной активности. В это время ультрафиолетовое излучение возрастает примерно в два раза, а рентгеновское — в десятки и сотни раз по сравнению с излучением в годы минимума. Интенсивность коротковолнового излучения изменяется изо дня в день, резко возрастая, когда на Солнце происходят вспышки. Ультрафиолетовое и рентгеновское излучения частично ионизуют слои земной атмосферы, образуя на высотах 200—'• 500 км от поверхности Земли ионосферу. Ионосфера играет важную роль в осуществлении дальней радиосвязи: радиоволны, идущие от радиопередатчика, прежде чем достичь антенны приемника, многократно отражаются от ионосферы и поверхности Земли. Состояние ионосферы меняется в зависимости от условий освещения ее Солнцем и от происходящих на нем явлений. Поэтому для обеспечения устойчивой радиосвязи приходится учитывать время суток, время года и состояние солнечной активности. После наиболее мощных вспышек на Солнце число ионизованных атомов в ионосфере возрастает, и радиоволны частично или полностью поглощаются ею. Это приводит к ухудшению и даже к временному прекращению радиосвязи. Особое внимание ученые уделяют исследованию озонового слоя в земной атмосфере. Озон образуется в результате фотохимических реакций (поглощение света молекулами кислорода) в стратосфере, и там сосредоточена его основная масса. Всего в земной атмосфере примерно 3 • 109 т озона. Это очень мало: толщина слоя чистого озона у поверхности Земли не превысила бы и 3 мм! Но роль озонового слоя, простирающегося на высоте нескольких десятков километров над поверхностью Земли, исключительно велика, потому что он защищает все живое от воздействия опасного коротковолнового (и, прежде всего, ультрафиолетового) излучения Солнца. Содержание озона непостоянно на разных широтах и в разные времена года. Оно может уменьшаться (иногда очень значительно) в результате различных процессов. Этому могут способствовать, например, выбросы в атмосферу большого количества разрушающих озон хлорсодержащих веществ промышленного происхождения или аэрозольные выбросы, а также выбросы, сопровождающие извержения вулканов. Области резкого снижения уровня озона («озоновые дыры») обнаруживались над разными регионами нашей планеты, причем не только над Антарктидой и рядом других территорий Южного полушария Земли, но и над Северным. В 1992 г. стали появляться тревожные сообщения о временном истощении озонового слоя над севером европейской части России и уменьшении содержания озона над Москвой и Санкт-Петербургом. Ученые, осознавая глобальный характер проблемы, организуют в масштабах всей планеты экологические исследования, включающие, прежде всего, глобальную

систему непрерывного наблюдения за состоянием озонового слоя.
Разработаны и подписаны международные соглашения по охране
озонового слоя и ограничению производства озоноразрушающих веществ.
^ 7.Радиоизлучение Солнца.

"Систематическое исследование радиоизлучения Солнца началось только после второй мировой войны, когда обнаружилось, что Солнце — мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучают хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Это радиоизлучение и достигает Земли.
Радиоизлучение Солнца имеет две составляющие — постоянную, почти
не меняющуюся по интенсивности, и переменную (всплески, «шумовые
бури»).

Радиоизлучение спокойного Солнца объясняется тем, что горячая солнечная плазма всегда излучает радиоволны наряду с электромагнитными колебаниями других длин волн (тепловое радиоизлучение). Во время больших вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение, порожденное быстропротекающими нестационарными процессами, имеет нетепловую природу."1

^ 8.Корпускулярное излучение Солнца. Ряд геофизических явлений (магнитные бури, т. е. кратковременные изменения магнитного поля Земли, полярные сияния и др.) тоже связан с солнечной активностью. Но эти явления происходят через сутки после вспышек на Солнце. Вызываются они не электромагнитным излучением, доходящим до Земли через 8,3 мин, а корпускулами (протонами и электронами, образующими разреженную плазму), которые с опозданием (на 1—2 сут) проникают в околоземное пространство, поскольку движутся со скоростями 400—1000 км/с.

Корпускулы испускаются Солнцем и тогда, когда на нем нет вспышек и пятен. Солнечная корона — источник постоянного истечения плазмы (солнечного ветра), которое происходит во всех направлениях. Солнечный ветер, создаваемый непрерывно расширяющейся короной, охватывает движущиеся вблизи Солнца планеты и кометы. Вспышки сопровождаются «порывами» солнечного ветра. Эксперименты на межпланетных станциях и искусственных спутниках Земли позволили непосредственно обнаружить солнечный ветер в межпланетном пространстве. Во время вспышек и при спокойном истечении солнечного ветра в межпланетное пространство проникают не только корпускулы, но и связанное с движущейся плазмой магнитное поле.

^ 9.Проблема «Солнце — Земля». Эта проблема, связывающая солнечную активность с ее воздействием на Землю, находится на стыке нескольких наук — астрономии, геофизики, биологии и медицины.

Некоторые части этой комплексной проблемы исследуют уже несколько десятилетий, например ионосферные проявления солнечной активности. Здесь удалось не только накопить множество фактов, но и обнаружить закономерности, имеющие определенное значение для осуществления бесперебойной радиосвязи (выбор рабочих частот радиосвязи, прогнозы условий радиосвязи и др.).

Давно известно, что колебания магнитной стрелки во время магнитной бури особенно заметны в дневное время и имеют наибольшую амплитуду, иногда достигающую нескольких градусов, в периоды максимума солнечной активности.

Хорошо известно и то, что магнитные бури обычно сопровождаются свечением верхних разреженных слоев атмосферы (до нескольких сотен километров), которое вызвано действием протонов и электронов, проникающих в атмосферу из космоса. Это полярные сияния — одно из красивейших явлений природы. Необычайная игра красок, внезапная смена спокойного свечения стремительным перемещением дуг, полос и лучей, образующих то гигантские шатры, то величественные занавесы, издавна привлекала к себе людей. В полярных сияниях преобладают два цвета — зеленый и красный. Окраска полярных сияний обусловлена излучением атомов кислорода (наиболее интенсивными в спектрах полярных сияний являются зеленая и красная линии).

Полярные сияния, как правило, наблюдаются в высоких широтах земного шара. Это объясняется тем, что заряженные частицы, двигаясь вдоль линий индукций магнитного поля Земли, именно в полярных областях могут проникнуть в атмосферу. Но иногда в годы максимумов солнечной активности полярные сияния можно наблюдать и в средних широтах.

Существует связь между явлениями на Солнце и процессами в нижних слоях земной атмосферы. Солнечное излучение воздействует на нижний слой атмосферы — тропосферу, а следовательно, и на погоду через процессы в верхних слоях атмосферы Земли, Выяснение механизма этого сложного воздействия необходимо для метеорологии. Важное значение имеет исследование влияния солнечной активности на биосферу Земли, в частности на состояние здоровья людей.

Чтобы всесторонне исследовать явления, происходящие на Солнце, проводятся систематические наблюдения Солнца (служба Солнца) на многочисленных обсерваториях всего мира. Одна из основных задач службы Солнца — предсказание (прогноз) солнечные вспышек. Прогнозы вспышек позволяют своевременно предотвращать нарушения радиосвязи, а также принимать меры, необходимые для обеспечения безопасности пребывания человека в космическом пространстве.

Изучение воздействия Солнца на Землю требует объединения усилий ученых многих стран. В историю науки, например, уже вошли «Международный геофизический год» — МГГ (1957 — 1958 гг.), проводившийся во время мощного максимума солнечной активности, и «Международный год спокойного Солнца» — МГСС (1964 — 1965 гг.), который был приурочен к минимуму солнечной активности. Комплексные исследования Солнца продолжаются и в настоящее время. Наблюдения, в которых принимают участие десятки стран, проводятся на всех континентах Земли. Данные о процессах, происходящих на Солнце и Земле, получают с помощью аппаратуры, установленной на искусственных спутниках Земли и космических ракетах, на горных вершинах и в глубинах океанов. Разрабатываются новые космические проекты, имеющие целью исследование Солнца.


III.Заключение.


Итак, Земля проходила своё становление очень продолжительное время, обретая всё новые и новые свойства. Бесчисленное множество факторов делало её всё сложнее пока, наконец, не появилась благоприятная среда для появления жизни. Но и после этого прогресс не остановился. Земля ещё долго совершенствовалась, а как следствие повышались уровни организации живых организмов, происходили всевозможные мутации, и, в конце концов, появились все мы, то есть человек. Сам факт того, что Земля появилась, дал возможность появления и жизни. Многие люди отдавали последние силы, посвящали себя тому, чтобы заниматься исследованием нашей великой планеты!


Сноски:

1 - Поиски жизни в Солнечной системе: Пер. с англ. М.: Мир, 1988 г.

2 - "Справочник любителя и астронома", Е. П. 3,4 - "Земля и Вселенная" N 4,1982 г.

5 - Энциклопедический словарь юного астронома, М.: Педагогика, 1980 г.

6 - Порфириев В. В. Астрономия.

7 - Клушанцев П. В. "Одиноки ли мы во вселенной? ": Дет. лит., 1981 г. 8,9 - Поиски жизни в Солнечной системе: Пер. с англ. М.: Мир, 1988 г. 10 - Левитан Е.П., Астрономия: Учеб. для 11 кл. сред, шк., М: Просвещение 1994г.


Литература:

1. Энциклопедический словарь юного астронома, М.: Педагогика, 1980 г.

2. Астрономия: Учеб. для 11 кл. сред, шк., М: Просвещение, 1990 г.

3. Клушанцев П. В. "Одиноки ли мы во вселенной? ": Дет. лит., 1981 г.

4. Эврика-89, М: Мол. гвардия, 1991 г.

5. Поиски жизни в Солнечной системе: Пер. с англ. М.: Мир, 1988 г.

6. Порфириев В. В. Астрономия.

7. Ф. Я. Цикл "Семья Солнца: планеты и спутники Солнечной системы", М. Мир, 1984 г.

8. "Земля и Вселенная" N 4,1982 г.

9. "Справочник любителя и астронома", Е. П.

10."Планеты открытые заново", С. Н. Коновалов, М., Наука, 1981 г.

11. Куликовский, М., Наука, 1977 г.

12. Левитан Е.П., Астрономия: Учеб. для 11 кл. сред, шк., М: Просвещение, 1994г.

Добавить документ в свой блог или на сайт


Похожие:



Если Вам понравился наш сайт, Вы можеть разместить кнопку на своём сайте или блоге:
refdt.ru


©refdt.ru 2000-2013
условием копирования является указание активной ссылки
обратиться к администрации
refdt.ru